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ABSTRACT

™ Sequential quadratic programming methods as developed by Wilson, Han, and Powell have

gained considerable attention in the last few years mainly because of their outstanding numeri-
cal performance. Although the theoretical convergence aspects of this method and its various
modifications have been investigated in the literature, there still remain some open questions
which will be treated in this paper. The convergence theory to be presented, takes into account
the additional variable introduced in the quadratic programming subproblem to avoid inconsis-
tency, the one-dimensional minimisation procedure, and, in particular, an *active set” strategy
to avoid the recalculation of unnecessary gradients. This paper also contains a detailed mathe-
matical description of a nonlinear programming algorithm which has been implemented by the
suthor. The usage of the code and detailed numerical test results are presented in [15].
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Introduction 1

1. Introduction

Consider the general ponlinear optimisation problem

minimize f(2)
zeR: gi(z)=0, j=1,...,m,, (2)
0](8)20, j=m¢+1:-'-1ml

with continuously differentiable functions f and g4, 7 = 1,...,m. One of the most effective tools
available today for solving (1), is the sequential quadratic programming algorithm as developed
by Wilson [16], Han [6], and Powell [10]. In this method, a line search is performed along a
search direction obtained by solving a quadratic programming subproblem. The algorithmic (see
Han {5], Powell [11]) and numerical (see {12]) bebaviour of the method have beer examired and
various modifications have been proposed to overcome certain difficulties. For example, the line
search procedure may impede superlinear convergence (see Maratos [9]), and the algorithm may
cycle (see Chamberlain [2]). One possible remedy (see [13]) it to replace the non-differentiable L,-
line search function used by Han and Powell by a differentiable augmented Lagrange function.
However, the convergence analysis of the original method and of the above modification is based
on some assumptions which are often not satisfled in practice and there are a few additional
numerical drawbacks:

1. All convergence proofs known so far to the author, assume that every quadratic subproblem is
feasible. However, this assumption is not always satisfied and Powell [10] proposed the introduc-
tion of an additional variable in the subproblem to guarantee consistency. It will be shown that
the resulting algorithm will converge if the corresponding penalty parameter is sufficiently large.
A lower bound for the choice of this penalty parameter is given.

2. The convergence proof of Han [6] is based on an Armijo-type line search procedure. However,
this could lead to an inefficient algorithm and Powell [10] proposed a combination of the Armijo-
type line search with a quadratic approximation. This modification leads to a slight alteration of
the existing convergence proof.

3. A numerical drawback of the method of Wilson, Han, and Powell is the unnecessary calculation
of the gradients of constraints which are inactive at the optimal solution. The experimental
tests of [14,15] show that an “active set” strategy can lead to a considerable saving of gradient
calculations. It remains to be seen whether it is possible to prove the convergence of the resulting
algorithm.

4. The augmented Lagrange function defined in [13] for the line search calculation uses one
monotone increasing penalty parameter for all constraints. To improve the robustness of the al-
gorithm, the penalty parameters are now chosen individually for each constraint, their calculation
is simplified, and they are allowed to decrease at the beginning of the algorithm.

5. Any sequential quadratic programming algorithm will have difficulties in finding a suitable
descent direction for the line search function, if the quadratic subproblem does not satisfy
s constraint qualification. A remedy will be proposed in this paper based on an augmented
Lagrangian type search direction.

Point 3 mentioned above, is of special importance. One of the basic open questions in non-
linear programming is whether an active set strategy leading to equality constrained subproblems,
will be superior to a sequential quadratic programming slgorithm with inequality constraints, or
vice verss. It is likely that only a combination of both approaches will lead to an efficient, robust,
and generally applicable algorithm, and one could consider the proposed “active set” modification
s a first approach in finding a suitable compromise.
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2 Convergence of a sequential quadratic programming method

In Section 2 of the paper, the augmented Lagrangian line search function and the quadratic
subproblem are defined. The algorithm is outlined in Section 3 together with some implementation
remarks. Section 4 contains the global convergence analysis and further remarks are given in
Section 5.
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2. Basle concepts
An important tool in nonlinear programming is the Lagrange function

Liz,u) = f(£) — Y ujgi(z) 0) -J

j=1

with £ € 8",y = (u3,...,um)T € R™, which is involved in the well-known necessary optimality
conditions, i.e. the Kuhn-Tucker conditions for problem (1)

a) VeLl(z,u) =0,

b g()=0, j=1,...,m,

c) 9i(z) 20, j=me+1,...,m, {3) 4
d) “520: j=m¢+10°-':ml }
e) g,-(z)u_,-=0, Jj=m.+1,....m

Here, V. denotes differentiation with respect to the z-variables. A sequential quadratic
programming algorithm proceeds from a quadratic approximation of the Lagrange function (2)
and a linearisation of the constraints. If z; denotes the k-th estimate for the optimal solution and
B) a symmetric matrix that approximates the Hessian of the Lagrange function, the resulting
quadratic programming subproblem can be written in the form

minimise }dTBid + Vf(z,)Td
dER: vy)(zk)rd + ,j(zk) = o) j = 1: vooy Mg, (4)
v’j(zk)rd_'- ’J'(zk) 2 0, j =m,+ 1,...,m

The next iterate is given by
Zx41 = 2x + ardy, 4

where d) denotes the solution of (4) and a; a steplength parameter which will be discussed later.
A numerical drawback of using (4) is that all gradients of the constraints must be evaluated in
each iteration step, even if z; is close to the solution and we can suppose therefore that the
calculation of inactive nonlinear constraints is unnecessary. This statement is at least true if
we expect that nonlinear constraints inactive at the optimal solution, correspond to linearized
constraints inactive at a solution of (4). To avoid this situation and to improve the efficiency of A
the algorithm, an alternative subproblem may be defined as follows: :

minimize §dT Byd + V{(zx)Td
dER™: Vgy(zr)Td+ gi(za) {3}0, FE A, (5)
Vaileun)Td+ gs(za) 2 0, FEK,. i

J,, and K, are two disjoint index sets with J,UK, = {1,. ,m} J,‘ is called the set -
of the active constraints including the equality constraints, and K i is the set of the inactive 4
constraints. The indices k¥(j) < k correspond to previous iterates and their definition will be
clear when investigating the algorithm.

To motivate the choice of the active set J,, we observe that the algorithm approximates :
not only the optimal solution by g£;, but also the optimal Lm multlrlierl The variables »
corresponding to the Lagrange multipliers, are denoted by vy = "))" A constraint is ‘
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4 Convergence of a sequential quadratic programming method

called active, i.e. its index is in J}, if its function value is not positive or if the corresponding
multiplier is greater than sero. Given a constant € > 0 and any iterates £; and v,, we set

N={. mIuliim<i<m gle)<e or o >0} ©
K, ={1,...,m} \ J;.

Kz is feasnble, v, is replaced by the optimal Lagrange multiplier of (1), and ¢ sufficiently
small, then J} i defines the constraints which are active at the optimal solution of (1). By using
the condition g;(zx) < € instead of gs(zx) < O, we attempt to avoid the situation in which g;(zx)
tends to zero for j € K.

However, the linear constraints in (4) or (5) can become inconsistent even if we assume that
the original problem (1) is solvable. As in Powell {10], an additional variable § is introduced in
(5), leading to an {n + 1)-dimensional subproblem with consistent constraints:

minimize 3dTBrd + Vf(22)Td + 4pr62
deER™GER: Vgi(za)Td+ (1 —8)gs(zs) {30, FEJL,

Vos(zan)Td+ gi(zs) 2 0, jE K},
0<6é< 1.

M

Obv:ously, the point dg = 0, 8o = 1 satisfles the constraints of (7), since g;(zx) > O for
all j € K. We conclude that (7) has a finite unique solution provided that the matrix B; is
positive-definite. The additional penalty parameter p, can be chosen by

P (A _ Ar—rup—_y)? )

= max(po (1= 613 _ Byr_1dx_

(8

for k > 0 and a constant p° > 1. A motivation for this rule is given by the convergence analysis
of Section 4. Here, Ay, denotes the matrix

Ap—1 = (Voy(za~1),- .., Vim(zr—1)).

Now assume that we have succeeded in solving (7), giving us a search direction d; and a

multiplier uy = (u{®,...,u(!)T. As mentioned above, the variables and the multipliers are
updated simultaneously by

Za+1 = ox +andy, Vag1 = 0p + ar(ur — ).

The steplength parameter a, is obtained by minimising a line search function or merit
function. Han {6] and Powell [10] used the non-differentiable Ly- penalty function

Mg m
P(s,r) = f()+ Y rslosle) |+ Y- rs|min(0,g5(s)) | (9)

Jm=1 Jm=me+t-1

with £ = (ry,...,7m)T. The use of (9) alone can lead to two difficulties. First, the superlinear
convergence may be impeded even in an arbitrarily small neighbourhood of the solution (see
Maratos [9]). Second, the algorithm may cycle if the penalty parameters are chosen improperly
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(see Chamberlain [2]). To overcome these situations, (9) has been replaced by the differentiable
augmented Lagrange function in [13), i.e. by

#.(z,9) = f(2) — Y _(vjg5(z) — drsgs(=)) — } 3 v3/r;. (10)
JEJ jEK
Here, the index sets J and K are defined by
J={1)°-':ml}U{j:mc<jSmn ﬂj(z)S"j/':'}. (11)

K={,...m}\ J.

However, we must be very careful when replacing (9) by (10) in an optimisation algorithm.
The difficulty arises that a solution of (1) is only a saddle point of the function ¢, with respect
to the variables (z,v). In other words, a formulation of an optimisation algorithm as a descent
method for ¢, with a constant penalty parameter r can lead to a sequence (zj,v,) that tends to
infinity, even if the feasible region of (1) is compact. To avoid this undesirable behavior of the
algorithm, the penalty parameter in (10) must be adapted in an appropriate way and is defined

by
oy 2m{ul®) — oM)2
(1) = maxf otFp®) J 3 i=1...
r; max(tr, i (1= 65)aT Bad ), J=1...,m,

= (40, BN

(12)
k41

where (dx, ;) is a Kuhn-Tucker point of the quadratic subproblem, 6 the additional variable from
(7) (8% 7 1), ry the previous penalty parameter, vy the current approximation of the multiplier
vector, and B, a positive-definite approximation of the Hessian of the Lagrange function. The

. function d
N T = Tk x
- B -~.f:f_~*_g§fg)~ -fo:f'(( v;) + a( up — v )) (13)
with T T mme— o ———

K= {1,...,M} \ Jh:
can be minimized with respect to a, leading to a steplength a;. We must distinguish between
the index sets J;, cf. (7), and Jj, cf. (14), which are both approximations of the optimal active
set of (1). It is easy to see that .
. Iy 2 & K, C K. (15)
The sequence {ay‘)} is included in (12) to allow for decreasing penalty parameters at least
in the beginning of the algorithm, if we require that o{*) < 1. On the other hand, it should
guarantee the convergence of {rg")} whenever this sequence is bounded. A sufficient condition is
given by the following lemma.

(3.1)Lemma: Assume that {rﬁ*)}geg is bounded, ag*) < 1 for all k, snd that

(- ]
-7 Z(l—vf,"’)(oo, 1<5<m
k=0

AT ELET LA

Then there is a r; > 0 with

. K __ ..
Lln;'s)—'j.

A=l m} Ulime <j<m, i) SO PEITIRT

i




Convergence of a sequential quadratic programming method

Prooft To simplify the notation, we omit the index j and define R as ths upper bound of the
penalty parameters. Assume that there are two different accumulation points r* and r** of {r(¥)}
with r* < r**. Then we obtain for each € > 0 infinitely many k and {; with

| At —pr 1<, A —p i<

Setting ! == I and choosing a sufficiently small ¢ > 0, we obtain
0<r —r" —2e
< —(rlk+D — p(¥))

i—1
<RY (1—ol+9)

[0

Since this inequality is valid for infinitely many k and the right-hand side tends to sero, we get a
contradiction. §

A possible choice of ag.") could be

1

ag.")il—(l— ! )
k
,/rg.)

Since we expect that only large penalty parameters could affect the performance of the algorithm,
we can replace the above formula by a simpler approximation

k
) -
J

a_‘,") = min(l ’




8. The algorithm

Now we are able to formulate the algorithm. First, some constants ¢, 8, 4, §, 7 have to be
chosen that are not changed within the algorithm and that satisfy

€>0, 0<f<1 0<pu<y 0<&<1 p>1 a7

The main steps consist of the following instructions:
(3.1) Algorithm :
0) Start: Choose some starting values zo € R®, vg € R™, By € R X R positive-deflnite, po € R,
re € ®™, and evaluate f(zo), g,(zo) i=1,...,m, V{(zo), Vgi{ze), s = 1,...,m. Determine
Jo and let k(j) =0 for all j € K.
Fork=0,1,2,... compute zx.1, Yx4+1, Bry1, rk41, pr+1, 80d .I,‘_,_l as follows:
1) Solve the quadratic subproblem (7) and denote by dy, §; the optimal solution and by uy the
optimal multiplier. If 6, > &, let p, == Ppx and solve (7) again. If this loop fails within a given
upper bound for 6y, define
dk = .-B;_!Vt¢fb(zkr ”k)) (18)
u = vy — Voo, (2x, ).
2) Determine the new penaslty parameter rx4y by (12) and (16). If 4 , u, have been obtained by
(18), let a1 = Tk.
3) If p3'(0) > O, let py = pp) and go to 1).
4) Define the new penalty parameter px.1 by (8).
5) Perform a line search with respect to the function px(a) defined by (13). Let axo == 1 and,
fori=1,2,..., let i, be the first index for which

wxlar,s) < va(0) + pay ivr'(0), (19)

where ax s = max(fay i1, & i—1). Here, Gy s—1 is the minimiser of 8 quadratic approximation
of pa(a) using pr(0), x’(0), and pi(ax,i—1). Define

Qg = Ok,i,.

6) Let
i1 =2 + axdy,
V41 = v + ax(ur — w),

and evaluste f(zh-i-l)p ’f(zk-f'l): j = 11 ey |, Vf(zk’i'l)p J;-{-l by (6)' and v’j(zk-}-l): j €
Thi
7) Compute a suitable new positive-definite approximation of the Hessian of the Lagrange func-
tion, i.e. Bx41, set k = k + 1, and repeat the iteration.

The following remarks will illustrate further details of the algorithm. Numerical experience
shows that the definition of the parameters satisfying (17) is not a crucial part for the performance.
Suitable values are

e=10"7, f=.1 w=.1 §=9, p=100

A stopping criterion has been omitted to facilitate the description of the algorithm. For a
suitable condition, one could use Powell’s [10] proposal or any other rules, for example

d:‘Bgdh < 6’,
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m
Y a1 < 6

g=1

| VaL(za,u) | < ¢,

S laste i+ 3 Imino,s(en) | < VE

=1 J=me+1t

The corresponding tolerance ¢, which must be provided by the user, could also be applied to
define the active set J}, cf. (6). Here, ¢ should be sufficiently small so that

0 <e<gj(z*)

for all 5 > m, with g;(z*) > O and for the optimal solution z*. If € is chosen too large, the only
disadvantage is that some additional gradient evaluations are required.

A user often has a suitable guess for the starting point z¢. If nothing is known about the
multiplier and the Hessian of the Lagrangian, one could define vp = 0, By = I, and one could
set pg =1, rgo) =1, §=1,...,m, or even larger, if a numerically stable algorithm for solving
the quadratic subproblem is available.

Numerical tests indicate that the penalty parameter pi in (7) could influence the performance l
A of Algorithm (3.1). For this reason, the numerical implementation [15] contains an additional
option to solve the quadratic subproblem (5) first, and to proceed to (7) only if (5) turns out to be
infeasible. Note that the convergence results of Section 4 remain valid if this option is preferred.
Furthermore, the choice of px by (8) is adapted to the current state of the algorithm to avoid
unnecessarily ill-conditioned matrices of the form

(Bk 0) 1
0
in the quadratic programming routine.
The loop in Step 1) of Algorithm (3.1) could fail only if the subproblem does not satisfy a
constraint qualification. In this case, the modified search direction (18) is used with the intention
of minimizing the augmented Lagrange function ¢,,. The loop between Step 3) and Step 1) is
finite, since a lower bound for the choice of px can be given, cf. Section 4.
When solving the subproblem (7) by any “black box” quadratic programming subroutine, ‘T
one overlooks the fact that in a quasi-Newton implementation, the matrix B, is updated by only
a rank-two correction. To improve the numerical efficiency of the algorithm, in particular, if only _
a few constraints are active, one could use a Cholesky factorization of By. For a description 1
of the corresponding LDL-factors see [14]. Then the quadratic subproblem is identical with a
least-squares problem which could, for example, be solved by the programs published in Lawson
and Hanson [8].
The definition of the penalty parameter r, ; is closely related to the algorithm presented in
{13]. However, there are two differences. First, the penaity paramecters are chosen individually
for each constraint, and second, bounded parameters are not expected to be constant as in [13],
so that the resulting algorithm should be more efficient and robust. Nevertheless it is possible
that ry4 ;1 tends to infinity. The convergence analysis of Section 4 will show that in this case, the
convergence of Algorithm (3.1) can be proved without using a line search, which indicates that this
situation should occur rarely in practical situations. The specific choice of 7, is motivated by
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the convergence requirement to generate descent directions for the augmented Lagrange function
®rut,. The parameter ry; will be large when the improvement in the approximation of the
variables, i.e. di, will be smaller than the improvement in the approximation of the multipliers,
ie uy— v
The line search procedure of Step 5) in Algorithm (3.1) is a very simple method and is justified
by the excellent numerical results obtained with the original implementation of Powell, cf. [12],
and in further tests, cf. [14,15). It is expected that only for badly scaled problems, this procedure
- should be replaced by a more sophisticated algorithm, c¢f. for example Gill, Murray, and Wright
. (3]. A straightforward classroom calculation shows that the quadratic approximation of pi{a) is
’ minimized by the expression

a} ;0x'(0)

' G, = *ag,;(px'(o) — (pxlar,s) — ox(0))

(20)

with

o= Voo, * )

rat-1\*k Yk Uy — Uy .

It will be shown in Section 4 that ¢,'(0) < 0, and that the line search algorithm is finite.
] When investigating Step 6) of Algorithm (3.1), the choice of the variables zx(; in (6) can be
p explained. In the matrix defining the linear constraints of the subproblem, only those rows are
replaced in the k-th iteration step, for which j € J ;+1' The others remain as the previously
computed gradients.

Finally, a suitable approximation of the Hessian of the Lagrangian must be found. The ex-
tensive numerical experience gathered in recent years shows that this Hessian can be approximated
by a variable metric formula with positive-definite matrices By, even if the true Hessian of the
Lagrange function is indefinite. Since excellent numerical results are obtained with Powell’s
modification of the BFGS-formula, cf. {12], the usage of this formula or its equivalent inverse
formulation, if one wants to avoid the inversion of triangular factors, is recommended. For more
information about this variable metric formula, see Powell (10] or [14] for the definition of the
corresponding LDL-factors.
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10 Convergence of a sequential quadratic programming method

4. Global convergsnce analysis

The convergence analysis of Algorithm (3.1) depends mainly on the Kuhn-Tucker conditions
for the quadratic programming subproblem (7) which can be written in the following form:

8) B+ 9z — Y uMVgn)— Y uMVgi(zap) =0,
jer, jeK;
D) mle+ 3 ugs(za) — v{P + v =0,
Jj€d,
c) wg.").—_o, i=1,...,mg,
d  wP>0, j=mt+1,...,m,
e 0<&<1, (21)
f) "‘S’k)ZO: j=m.+1,...,m,
g >0
B ¥ >0,
i) w_(,.k)u'(’.") =0, 5=1,...,m,
iy e =0,
K Pa—sa)=0,
where % .
ol = Vg;(z)Tdx + (1 — 6p)gs(z), FE T3,
vl = Vg(zai)Tdr + gilza), FE K
v(l") and v(,“) are the multipliers with respect to the lower and upper bounds for the additional
variable 4.

First we have to investigate whether Algorithm (3.1) is well defined and start with considering
the internal loop of Step 1).

(4.1) Lemma: Assume that (7) satisfles the constraint qualification, i.e. that the gradients of the
constraints active at the optimal solution are independent, and that the feasible region of (7) is
bounded for each k. Then the loop in Step 1) of Algorithm (3.1) is finite.

Prooft To simplify the proof, we omit the iteration index k and assume that there are infinitely
many p; with lim; o p; = 00, each giving a solution d;, §; of (7) and a multiplier u;. Since
6;6 > 0, we obtain from (21b)

0> pibi+ Y Wlgi(z) 2 pif + Y Wlg5(2)

jeJ* jer*

(22)

indicating that lim;.oo || 4i ||= 0o. If @; denotes the non-zero part of u; and A; the matrix
consisting of the corresponding gradients Vg;, we write (21a) in the form

Bd; + Vf(z) — A, =0

or
g = (AT A) 1A, (Bd; + V1(2)).

Since, however, {d;} is bounded, we obtain a contradiction. 1§

- '?"m’v""‘"’"'*'?"’n‘VM“-' - . Ryl ".' PO -y

P —

e e e e o~ + e,

MR L L

Eras e =)
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The boundedness of the feasible region in (7) will henceforth be assumed now in the further
global convergence analysis. The iterates z; can be forced to remain bounded, if additional lower

and upper bounds are given in (1), i.e. if there are £;, £, € ®" with
n<z< 2, (23)

also implying the boundedness of {d,} provided that {a,} does not approximate sero.

The subsequent theorem will be fundamental for the convergence apalysis. It shows that
the computed search direction is a descent direction for ¢,,,,, i.e. that the line search is well
defined, and that it leads to a sufficiently large decrease of ¢,,,,. First, some notation will be
introduced to facilitate the proof. If zj, vx, J) are some iterates of Algorithm (3.1) and ry4 the

corresponding penalty parameter, we set

(%) 0
. v\, if 5 € A,
) = (0(:), .. .,0(,:))1.; 0-(:) = { 5 otherwise

ol = {"5-"' it j € Ju,

= (g(®) (AT
o, = (o,..., 0o®)T -
v = (07 m) 0, otherwise,

o = (02(22), ..., gm(za))T, .

B = 1(za), ..., Imlza))T, Ji(zs) = {”éfkc);thfr:vifel,h (24
. gi(zx), H5E U,

A ICHR AU O {.,g..;,,;,, otherwise

A = (Va(zi), ..., Vam(za)),
Ryt = diag(r{*+1), ..., rt+1)
Then we can express the gradient of ¢y, ,(zx, vi) in the following form:
v — Ay(0r, — R,
Vérayi(za ) = ( £(zx) Ak_( ; k+17k)). (25)
&

(4.2) Theorem: Let z;, v;, dy, &, ux, By, 74, ps, and J, be given iterates of Algorithm (3.1),
k > 0, and assume that

() dTBudy > 7||di]]® foratERWILhO< vy <1,

(II) 5& S 5-)

| Axos )12
(i) o2 po g %
Then
Ve (, ) <—brlar. (29)

Prooft We use the Kuhn-Tucker conditions (21) for the quadratic subproblem and get (26) by the
following estimates, where we omit the iteration index k:
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d
—Vé,(z, ")T(u - u)
= —Vf(z)Td+ dTA(0 — Ry) + 7T (u—v)
=dTBd — E uijj(z)Td — 2 ungj(zg(,))Td
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> 47141 +4d"Bd— — 2 —(u; — )

- 07—~ = 2.)
> byl d )P +44Bd— 2 .‘ff,‘(_uj""’ (s — o)
1
~ i @ —8r— o))’ o£.(12)
= 1114 — s 07 AT ot.(22)
2 g1l e - s Py a e et (i)
> 4rlldpR. of.0,(8)

During the proof we used ug.") > 0for all § > m,, since ay_; < 1, and we set

R'2 = diag(\/F1, ..., \/Tm)-

Assumption (i) can be considered as a standard assumption henceforth required in the theory
of quasi-Newton algorithms. It can be forced by choosing a v and performing a restart with
By = I whenever (i) is violated. The validity of assumption (ii) is guaranteed by Step 1) of
Algorithm (3.1), since Lemma (4.1) shows that after finitely many sub-iterations, the condition
6 < § will be achieved at least under a constraint qualification. Otherwise, d; and u; define
a descent direction for ¢, 1 in the case when they are replaced by (18). To avoid expensive
calculations for obtaining the lower bound (iii) of the penalty parameter, p, is defined by (8),
since

d{_lAg_gug_l = d{_185_1dg_1 + d{_IVf(Zg_l). (27)

and all inner products are previously computed in the algorithm. Furthermore, the lower bound
in (iii) does not depend on dy, ux, or px, which implies that the loop between Step 3) and Step
1) of Algorithm (3.1) is finite.

(4.3) Corollary: The loop between Step 3) and Step 1) of Algorithm (3.1) is finite.

To show that the line search of Step 3) of Algorithm (3.1) defines a finite sub-iteration, we
use the following estimate for a,

(4.4) Lemmas Let k denote the k-th iteration of Algorithm (8.1) and assume that ©,'(0) < O.
Then

apits < mﬂ(ﬁ, ﬁ)ﬁm (28)

whenever (19) is not valid for some s > 0.
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Prooht From ,'(0) < 0 and the violation of (19), we obtain h‘,

af ;0x'(0)
ay,«2x’(0) — (palan,q) — va(0))
a?,.‘p.'(O)
ay,ipx'(0) — pay s’ (0)

Gri =4

<t

1
B

cf. (20), and

agi+1 < max(ﬁ, ?(il?“;)an.e.

|
Since ax,¢ — 0 for § — 0o and ,'(0) < 0 is impossible without violating (19), we get:

(4.5) Corollary: The line search procedure of Step 3) of Algorithm (3.1) is finite provided that
#a'(0) < 0.
Now we are able to prove the following convergence theorem:

(4.8) Theorem: Let 23, vy, dy, &, s, By, rs, px, and J, be given iterates of Algorithm (3.1),
k > 0, and assume that there are positive constants v and § with

() diBudy 27|l dri® forallk,
(i) & <& foralk,
| Avox (12
> N80
(iii) px 2 por g for all k,
(iV) {zk}l {dl}; {uh}, and {Bk} are bounded .
Then there exists for each ¢ > 0, a k with

) Hal<e
B IR u—a) < e

Prooft First note that the boundedness of {u,} implies the boundedness of {v;}, since ap < 1
for all k. To show a), let us assume that there is an ¢ > 0 with

lldu 1> e (29)

for all k. From the definition of 745, k > 0, we obtain either r§*+‘) = 4°)r§°) or

am(ul*") — oty
(+1)

5 S Tt )dloBadae
< am(u{*") — {42

= (1—é8)ye?
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16 Convergence of a sequential quadratic programming method

for some k* < &, § = 1,...,m. Since u; and therefore also v; are bounded, we conclude that
{r)} remains bounded and Lemma (2.1) implies that there is some r > 0 with

lim py=r. (30)
k—s00

Now consider any iteration index k. Then

"Q+x(zk+l) ”k+l) < ¢n+a(zh u)+ ”akv¢u+x(zk; "k)r( us it Uk)

31
< brnp a2 va) — sy || dy 2 @)
< ¢9~+;(zk' ”k) - *“’1‘zah

cf. Theorem {4.2). Next we have to prove that a) cannot tend to gero. Let k > 0, and

ne () me(Lb)

3 Since all functions defining ¢, are continuously differentiable, r;.; is bounded, and 2), p; remain
‘ in a compact subset of ®*+™, we can find & > 0 with

| Vérars(2x + apr)Tor ~ Vo, (22) s |
<l V¢,,+,(zk + apy) — v¢u+s(zk) It px I (33)
< #1— e

for all @ < & and for all k. Using the mean value theorem, we obtain a £, € [0,1) with

brapa(ze + apr) — ¢u+;(zh) - I‘av¢u+1('k)rpk
= &V¢y.+,(2); + fkapk)rpk - ”av¢'h+t (‘h)rpk

< aV4y,, (ax)s + da(l — plre — paVy, . . (2) s ¢f.(33)
< —ta(l —p)v |l di I? +dall — w)7é of. Th.(4.2)
< —a(}(1 — u)re — 41 — p)ye?) of.(29)
= —ga(l — u)yé

<0

for all k and all a < &. From (28) we conclude
F<ar <A

for all i > O, where

ﬁﬁmax(ﬁ,i(—l—f_—“)), 0<f<l.

Therefore, there is an o independent from & so that (19) is satisfied for all § > ip and all k. Since
iy is the first index for which a; ¢ satisfies (19), we conclude that ax does not approach sero, i.e.

ay = apg, > f* > f%.

\ ———
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Together with (31) we obtain

Orars(Bet1) < Ory .. (80) —2¢ (34)

with
€= (1 — phye’p.

Now we consider the difference

$rave(Bri1) — drapi(Bria)
= — Z ("_(,'k'*'l)ﬂj(zh +1)— *'§k+2)’ (a4 )3 — 3 2 ”$t+1)3 /'$g+z)

JEIn41 JEKn41
2
+ 3 0 gyzagn) — 3 iz ) + 3 Y o D
JEM FEK,

with
Jepr = {1,...,me} U{f:m, <5< m, gilaata) < o+,
Ji={L,...,m} U{j:me <5< m, gilzass) < o0t

and K4, K are the corresponding complements. Since ryy — r > 0 for k¥ — 00, g;{2341)
and v;.y are bounded, we get

¢'b+a(zk+l) - ¢'.+s(33+l) <t

for all sufficiently large k. This leads to

".4..("&-{-1) S ¢1h+;(‘k+l) + & S ¢!~+;(’k) — &

cf. (34), for all sufficiently large k and to a contradiction, since {¢,, ,(2x)} is bounded below.
This shows statement a). Statement b) follows from a), the definition of rx,, cf. (12), and the
boundedness of {B)}:

v o (W) oy
i R;}.{ (i—wm) 2= W

(1 — 63)d] Bydy

s 2m

Ju=1
< 44T Budy.

Note that Theorem (4.6) also treats the case in which the penalty parameters are unbounded.
In that case, the convergence analysis is simplified, since definition (12) of the penalty parameters
and the boundedness of {u,}, {vs} imply that {ds} spproaches sero. H, on the other hand, we
knew that the penalty parameters are bounded, then (12) shows that the statement

fur—wll < ¢

B P S
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18 Convergence of a sequential quadratic programming method

could be added to the results of Theorem {4.5).

Most of the technique in the convergence proaf of Theorem (4.8) is standard and well known
from unconstrained optimisation theory. It is repeated here for completeness. However, we must
be aware that

¢'h+a('k+1) > ¢u+;(’k+1)

is possible, implying that convergent penalty parameters are required to obtain a contradiction
to (29).

The statements of Theorem (4.8) can be used to show the approximation of a Kuhn-Tucker
point by Algorithm (3.1):

(4.7) Theorem: Let z,, vy, dx, 6x, ux, B, J}, be computed by Algorithm (3.1) and assume that
all assumptions of Theorem (4.6) are valid. Then there exists an accumulation point (z*, u*) of
(zx, ux) satisfying the Kuhn-Tucker conditions (3) for problem (1).

Proof: The boundedness of {zx}, {ux} and the results of Theorem (4.6) guarantee the existence
of z* € X", y* € R™, and an infinite subset § C N with

lim z;, = z*
res k ]
lim uy = u*,

kES
lim dy =0, (35)
kES

. —1/20 o)
;’en; I Rk-f-l (ur —w) J|=0.

Since {f)} is bounded away from unity, (22) and {21c,d) give
gj(z*) =0, 5=1,...,m,,

9;(z*) >0, j=m+1,...,m
showing that z* is feasible. From (21f) we get
0;20, i=m+1,...,m,

and (21i) leads to
- Py
u;9i(z*) =0, j=1,...,m. (38)
It remains to prove (3a). Assume now there exists a J > m, so that j € K for infinitely many

k E S (otherwise we are finished). The definition of K} x» cf. (6), implies g;(2*) > € and (38) gives
u = 0. We conclude from (21a) that

V.L(z* u*) =0.

The following corollary follows directly from the statements of Theorems (4.8), (4.7) and from
{(21b).
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(4.8) Corollary: Under the assumptions of Theorem (4.7), let S deflne an inflnite subset of X so
that (2, ux) converge to a Kuhn-Tucker point (z*, u*) of (1) for all k € S. Then

a) limpeg 8y =0.

3) K, in addition, the penalty parameters ry are bounded, then

lim vy = u®.
keSS

Assumptions (i) to (iii) of Theorem (4.6) are required to obtain descent directions for the
function ¢,. As noted in the beginning of this section, the boundedness of {z;} and {d;} can be
enforced by introducing additional bound constraints of the type (23), and suficient conditions for
{ua} to remain bounded, are given in [13]. They are mainly based on a consiraint qualification
which must be satisfled in each subproblem. The assumptions of the convergence theorems
presented so far exclude the special case that a search direction has been obtained by (18). It
can be expected that this replacement occurs rarely if the nonlinear programming problem (1)
satisfies a constraint qualification at its optimal solution. If, on the other hand, (18) is always
used to define the new iterates, then {3.1) could be considered as a multiplier method and its
well-known convergence results can be applied.
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5. Further comments

; In addition to the global convergence behavior outlined in the previous section, one could be
F interested in the local convergence speed of Algorithm (3.1). The only statement to show is, that
. the steplength is one in a neighbourhood of the solution. Then (3.1) is identical with the original
method of Han and Powell and we can apply their local superlinear convergence resuits, cf. (5]
or [11], respectively. However, Algorithm (3.1) is closely related to the method presented in [13].
The only difference influencing the local convergence analysis is a slightly simplified choice of the
penalty parameters. Since both approaches are identical in principle, a repetition of the local
b convergence analysis of [13] for the presented modified case is omitted.
' Algorithm (3.1) has been implemented in a user oriented way and has been tested extensively.
The usage of the program and its FORTRAN source are published in [15]. The numerical results
of [15] are obtained by executing the test problems published in Hock and Schittkowski {7], and
can be compared with the results given there. The subproblems of the kind (5) or (7), respectively,
are solved by the quadratic programming routine of Gill, Murray, Saunders and Wright [4] and
by a linear least-squares program based on the subroutines published in Lawson and Hanson [8].
Furthermore, the L;-penalty function has been implemented to compare both approaches, and
two different line search algorithms are tested.

For further information about the numerical performance of other versions of Algorithm
(3.1), the reader is referred to [14]. Five different versions of the method of Wilson, Han, and
Powell are tested there which all realize the active set strategy and are based on a least-squares
] formulation of the quadratic subproblem. They differ in the choice of the line search function,
the formulation of the subproblem, the solution method for the least-squares subproblem, and in
the way in which the gradients are computed. Furthermore, the'r performance can be compared
with the performance of the 26 optimization programs tested in [12], and, in particular, with
the original implementation VF02AD of Powell and with OPRQP/XROP, two versions of Bigg’s
3 {1] recursive quadratic programming method which uses an active set strategy to define equality
: constrained quadratic programming subproblems.

Eae Bactid gk | acd
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